AI & Machine Learning

Building Generative AI Workflows with Gemini Pro 3: From Prototype to Production

December 05, 2024 3 min read By Amey Lokare

Building Generative AI Workflows with Gemini Pro 3: From Prototype to Production

Google's Gemini Pro 3 represents a major leap in multimodal AI capabilities. I've integrated Gemini Pro 3 into production workflows for content generation, code assistance, and intelligent automation. Here's how to build scalable AI workflows that leverage its advanced reasoning and multimodal understanding.

🎯 Why Gemini Pro 3?

Gemini Pro 3 offers:

  • Multimodal understanding: Text, images, audio, video
  • Advanced reasoning: Complex problem-solving capabilities
  • Long context: Handles up to 1M tokens
  • Function calling: Seamless API integrations
  • Cost-effective: Competitive pricing for production use

🏗 Architecture for AI Workflows

``` User Input → Workflow Orchestrator → Gemini Pro 3 API → Post-Processing → Output ↓ Database/Storage ```

Components

1. Workflow Engine: Manages multi-step AI processes 2. Gemini API Client: Handles API calls and rate limiting 3. Post-Processing: Validates and formats outputs 4. Storage: Caches results and tracks workflow state

💻 Implementation

1. Setup Gemini Pro 3 API

```python from google import genai import os

Initialize client

client = genai.Client(api_key=os.getenv('GEMINI_API_KEY'))

Configure model

model = client.models.generate_content( model='gemini-2.0-pro-exp', config={ 'temperature': 0.7, 'max_output_tokens': 8192, } ) ```

2. Basic Text Generation

```python def generate_content(prompt, context=None): full_prompt = f"{context}\n\n{prompt}" if context else prompt

response = client.models.generate_content( model='gemini-2.0-pro-exp', contents=full_prompt )

return response.text ```

3. Multimodal Workflow

```python def analyze_document(image_path, question): # Upload image image = genai.upload_file(path=image_path)

# Multimodal prompt prompt = f""" Analyze this document image and answer: {question}

Provide: 1. Key information extracted 2. Relevant details 3. Actionable insights """

response = client.models.generate_content( model='gemini-2.0-pro-exp', contents=[image, prompt] )

return response.text ```

4. Function Calling for Workflows

```python

Define functions

functions = [ { 'name': 'send_email', 'description': 'Send an email notification', 'parameters': { 'type': 'object', 'properties': { 'to': {'type': 'string'}, 'subject': {'type': 'string'}, 'body': {'type': 'string'} } } } ]

Call with function calling

response = client.models.generate_content( model='gemini-2.0-pro-exp', contents=user_prompt, tools=[{'function_declarations': functions}] ) ```

🔄 Workflow Patterns

Content Generation Pipeline

```python class ContentGenerationWorkflow: def generate_blog_post(self, topic, style="technical"): # Step 1: Generate outline outline = self.generate_content(f"Create outline for: {topic}")

# Step 2: Generate sections sections = [] for section in parse_outline(outline): content = self.generate_content( f"Write '{section}' section about {topic}", context=outline ) sections.append(content)

# Step 3: Combine and refine full_post = "\n\n".join(sections) return self.refine_content(full_post) ```

Code Generation Workflow

```python def code_generation_workflow(requirement): # Generate code code = generate_content(f"Write Python code for: {requirement}")

# Review and improve review = generate_content(f"Review and improve: {code}")

# Generate tests tests = generate_content(f"Write tests for: {code}")

return {'code': code, 'review': review, 'tests': tests} ```

🚀 Production Considerations

Rate Limiting & Caching

```python from functools import lru_cache

@lru_cache(maxsize=1000) def generate_cached(prompt_hash, prompt): return client.models.generate_content( model='gemini-2.0-pro-exp', contents=prompt ) ```

Error Handling

```python from tenacity import retry, stop_after_attempt, wait_exponential

@retry(stop=stop_after_attempt(3), wait=wait_exponential()) def generate_with_retry(prompt): try: return client.models.generate_content( model='gemini-2.0-pro-exp', contents=prompt ) except Exception as e: if "rate_limit" in str(e).lower(): time.sleep(60) raise ```

💡 Real-World Use Cases

I built workflows for:

  • Automated content creation: 10x faster blog post generation
  • Code assistance: 50% reduction in boilerplate development time
  • Document processing: Automated extraction and summarization

🎓 Best Practices

  • Prompt Engineering: Clear, specific prompts yield better results
  • Context Management: Maintain conversation context
  • Validation: Always validate AI outputs
  • Caching: Reduce costs with intelligent caching
  • Monitoring: Track usage and quality metrics

Conclusion

Gemini Pro 3 enables powerful generative AI workflows. Design workflows that leverage multimodal understanding and advanced reasoning while managing costs and errors properly.

Comments

Leave a Comment

Related Posts